
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 817
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Analysis of Fault Tolerance on Grid Computing
in Real Time Approach

Er.Parampal Kaur, Er. Deepak Aggarwal

Abstract-- In computational Grid, fault tolerance is an imperative issue to be considered during job scheduling. Due to the widespread use of resources,
systems are highly prone to errors and failures. Hence fault tolerance plays a key role in grid to avoid the problem of unreliability. Scheduling the task to
the appropriate resource is a vital requirement in computational Grid. The fittest resource scheduling algorithm searches for the appropriate resource
based on the job requirements, in contrary to the general scheduling algorithms where jobs are scheduled to the resources with best performance factor.
The proposed method is to improve the fault tolerance of the fittest resource scheduling algorithm, by scheduling the job in coordination with job
replication when the resource has low reliability. Based on the reliability index of the resource, the resource is identified as critical. The tasks are
scheduled based on the criticality of the resources. Results show that the execution time of the tasks is comparatively reduced with the proposed
algorithm using real time approach rather than simulator.

Keywords: Computational Grid, Fault tolerance, Job Scheduling, Task Replication.

—————————— ——————————

1.INTRODUCTION
Fault tolerance is an important property for large
scale computational grid systems, where reliability and

geographically distributed nodes co-operate to execute a
task. In order to achieve high level of

availability, the grid infrastructure should be a foolproof
fault tolerant. Since the failure of resources affects job
execution fatally, fault tolerance service is essential to
satisfy QOS requirement in grid computing. Commonly
utilized techniques for providing fault tolerance are job
check pointing and replication. Both techniques mitigate
the amount of work lost due to changing system
availability but can introduce significant runtime overhead.
The latter largely depends on the length of checkpointing
interval and the chosen number of replicas, respectively. In
case of complex scientific workflows where tasks can
execute in well defined order reliability is another biggest
challenge because of the unreliable nature of the grid
resources. In the grid environment the resources are
heterogeneous and highly distributed. Hence they are
prone to failures. Any scheduling algorithm will be more
effective if fault tolerance is taken into account. The idea in
this paper is to enhance the effectiveness of MFRS
algorithm proposed by Ruay et.al [15] by adding the fault
tolerance feature to the algorithm. In the grid computing
environment, when a resource is over exploited that is, if a
resource is allocated to many Tasks, it depletes the power
of the resources leading towards its failure. The execution
time also increases for the job which is assigned to these
resources.
To solve this problem, the less reliable resources are
identified as critical resource. The identification of the
resources as critical resource is done on the basis of failure
rate of the resource. If the resource failure rate is increasing
gradually and retains constant then the resource is critical.

For all the resources which are less reliable, when a task is
allocated to it, there are greater probability of failure which
can cause severe problems for the users of the Grid
environment. For this, Task which are assigned to those
critical resources are replicated to another resource in the
same level. This duplicated task is now again kept on the
Task List for execution. So the chances of the successful
execution of the submitted Task will increase. The resource
which fails for a particular time is not assigned to any other
job during that period. The failed jobs are again added to
the Task List and are ready for the scheduling again. These
jobs are allocated to the same level resource if any resource
is present in same level or they are allocated with the
resource of next level. This concept of replicating of the job
will increase the reliability. And also reduce the overhead
of the resources. The fault tolerance is the imperative issue
of this paper. The failures are predicted as transient failures
which are randomly generated and for a random interval of
time. The failed resource will be again available for the
allocation once the problem of the resource is rectified.

2. RELATED WORK
Grid resource scheduling is one of the most significant
research issues today. Most of the existing scheduling
algorithms do not consider the resource failure during
scheduling which would eventually increase the execution
time of the task. Some of the resources scheduling
algorithms which are more related to the issues considered
in the paper are discussed along with their shortcomings.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 818
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Metacomputing prototype Charlotte uses the eager
scheduling mechanism [3] where the tasks are assigned to
the free nodes randomly to keep them busy. There is a
manager process which schedules the jobs and volunteers,
who volunteer to execute the job. The parallel jobs having
concurrent routines are split and given to different
volunteers for execution. When all the routines are
allocated and still if volunteers are free the unfinished jobs
will be reassigned to the volunteers. If a machine fails, the
job is migrated and reexecuted in another machine
automatically. The advantage of this mechanism is that
even if there is one machine which runs normally for a long
period, there is higher probability that all jobs will be
executed successfully. The failure of a machine or a slow
running machine will not affect the execution of the jobs.
But the problem is that same task may be replicated in
many resources such that newly arrived tasks do not have
any available nodes which reduce the system throughput.
Replicating the task in many resources possibly increases
the probability of successful execution of the task, but in
turn replicating the tasks, when there is insufficient
resources, delays the job execution.
D.Saha et.al.,[4] describes the FPLT algorithm in which the
scheduler sorts the node and task information by each
node's CPU speed and task's workload in order to reduce
complexity for searching the fastest node and the largest
task all the time. Then the scheduler assigns the largest task
of the waiting tasks to the available fastest node. FPLTF
will reduce to the same as Workqueue when the tasks
arrive one by one Wang et.al [18] in their MFTF algorithm
declares the fitness between the task and the node based of
the expected execution time and execution time of the node.
The node which has much less difference is expected to be
the fittest node and the task is allocated to it. The fitness
definition seems to be arbitrary.
Bajaj and Aggarwal [17] proposed an algorithm TANH
(Task duplication-based scheduling Algorithm for Network
of Heterogeneous systems) in which a new parameter is
introduced for each task: the favorite processor (fp), which
can complete the task earliest. Other parameters of a task
are computed based on the value of fp. In theclustering
step, the initial task of a cluster is assigned to its first fp,
and if the first fp has already been assigned, then to the
second and so on. Duplication based algorithms are very
useful in Grid environments. The computational Grid
usually has abundant computational resources (recall that
the number of resource is unbounded in some duplication
algorithms), but high communication cost. This will make
task duplication very cost effective. Most of the dynamic
scheduling algorithms are based on predictions based on
historical records. Yang et al [11] provide three levels of
prediction. The first level is the simplest one-step-ahead

prediction in CPU load changing and historical peak values
are used as thresholds. If the performance of current time
point is increasing, the performance for the next time point
will be predicted as increasing unless the upper threshold is
reached, and vice versa. Based on this one point prediction,
interval performance prediction for the near future can be
obtained by aggregating multiple point performance in
previous intervals and using the one-step-ahead prediction
scheme to the aggregated value. The variance of
performance in an interval can also be obtained in a similar
way: using historical data of a series points to get the
standard deviation of the performance during each interval,
and then applying the one-step-ahead scheduling scheme
to standard deviations of previous intervals. A machine
with lower interval variance is considered more “reliable”,
and a scheduler “conservatively” assigns less work to high-
variance resources [5].
Conservative scheduling [11] assigns less work to less
reliable resource. This algorithm avoids the wave of
delayed behavior caused by variance in the resource
capability. Here the conservative load prediction is done
based on the predictive mean and predictive variance.
Conservative scheduling technique uses the predicted
mean and variance of CPU capacity to make data mapping
decisions. The basic idea is to allocate more work to
systems that which are expected to deliver the most
computation, where this is defined from the viewpoint of
the application. A resource with a larger capacity will also
show a higher variance in performance and therefore will
more strongly influence the execution time of an
application than will a machine with less variance. A
cluster may be homogeneous in machine type but quite
heterogeneous in performance because of different
underlying loads on the various resources.

3. FAULT TOLERANT MFRS ALGORITHM
The most fitting resource algorithm [15] proposed the
closeness factor which describes the appropriateness of the
resource with the job requirements. The scheduling
algorithm schedules the job to the appropriate resource
rather the best performing resource. In the MFRS[15]
algorithm the resources are categorized into L discrete
levels. The literature entire resource is divided into ten
levels and the fittest resources are allocated to the nodes
from these levels. These levels are generated dynamically
by calculating the PET. In this paper a new parameter
called Reliablity index is proposed to improve the fault
tolerance of the most fitting resource scheduling algorithm.
As we know when workload increases then the chances for
the job failure increases. So once the resource fails the jobs
allocated to that resource fails. If a resource fails
continuously for a number of times then we can’t be sure

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 819
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

that the Task submitted to that particular resource will
execute successfully. This problem will lead to the wastage
of time as well as the resource and will increase the average
waiting time for the Task. To get rid of this problem the
reliability of the node is measured at the time of scheduling.
If the most fitting node has less reliability level, the task is
replicated to node in the same level. The reliability of the
node is measured as follows.
Let f be the number of failures in given time say t.

 f = no.of failures

total time of execution
 (1)

When there is no failure (1− f)t
(1− f)t= e−ft
Taking log
t log (1− f)= - fr log e
Differentiating with respect to t
1
f
 = log e

log(−f)=a

So f=1
𝑎

Node’s reliability at time t
NRt = e−ft =e

t
2

Where a= Total Execution Time
No of failures

The tasks that are allocated to the less reliable resources are
replicated and a new ID is given to them with the same
parameters is added to the Grid list. The Grid user will be
more secure if the Task given by him is successfully
executed. Once the Tasks are failed it is added back to the
Grid list. This will reduce the risk of job failure. In this real
time approach only the transient failures of the resources
has been considered. Failure of resource is generated
randomly at random interval of time. These resources
become available after a certain interval of time and can be
used as normal resources. This concept of cloning of the job
will increase the reliability of the grid environment.
Providing a fault tolerant grid environment improves the
efficiency of the system.
Algorithm
Step 1: The task Ti is submitted for scheduling.
Step 2: The resources are categorized into different discrete
levels based on the predicted execution time for the given
task Ti.
Step 3: The resources are marked Critical based on the
Reliability Index value.
Step 4: The closest level Li Based on the desired execution
time of the Task Ti is identified.
Step 5: Any node Ri within the Level Li with minimum
load is allocated to the Task Ti.
Step 6: If the resource Ri is marked Critical, then Task Ti is
replicated and submitted to
another resource Rj with minimum load in the same level
Li.

4. RESULTS COMPARISON
4.1 Present Work
This section shows comparison between real time
approach using socket programming and Java simulator. In
this section our main focus on the task execution speed. The
speed to execute any task is increased with real time
approach as compared to java simulator. We have shown
comparison between real time approach and java simulator
with the help of following tables. Table shows execution
speed and CPU utilization, on the basis of these term we
have identified the performance. Totally 10 resources
ranging from 1 to 10 were created as per the specifications
in table. Each of these resources are divided into 10
different levels after the calculation of Predicted Execution
Time (PET)[15] for each job. The average waiting time of
each resource is also calculated. Each resource has its own
queue and all the Tasks coming is added to these queues

after scheduling the job. Once the resource is assigned to
any Task it can’t be allocated to other Task until it freed.
Each resource has its own queue which holds the Task
assigned to it. Following table shows performance of real
time approach:

We have concluded from the table that CPU speed or
execution speed of task consistently increases as compared
to simulator. The previous simulator performance will be
discussed in the next section.

4.2 Previous Work
The Java based Simulation environment similar to the one
created by Ruay et.al [15] for implementing MFRS
algorithm was created and used to analyze the performance
of the FMFRS algorithm.

TABLE 1
 PERFORMANCE OF REAL TIME APPROACH

CPU ID CPU Speed CPU Utilization

1
2
3
4
5
6
7
8
9
10

2 GHz
2.2 GHz
2.5 GHz
2.7 GHz
2.9 GHz
3.1 GHz
3.3 GHz
3.5 GHz
3.7 GHz
3.9 GHz

0.5
1.1
1.3
1.0
1.0
0.3
1.8
1.9
0.7
0.5

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 820
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In the following table, we have present the performance of

java based simulator created by A. Shamila Ebenezer and
K. Baskaran[1].

The next part of the module is the creation of the Tasks.
These Tasks are created by the Grid users. Two Grid users
are created by using socket programming. Each user is
capable of creating specific numbers of tasks. Each Task
has certain parameters including workload, requested
speed and closeness factor. The Tasks also include a unique
ID and a Boolean parameter Success to state that where the
job is executed successfully or not. Workload is given in
millions of instructions and its range varies from 300000 to
500000. Normally if the workload is very high then it is
tough to fulfill all the requirements. The workload for each
Task is generated randomly. The requested Speed is given
in millions of instruction per second (MIPS). This depicts
the power of resource needed to accomplish the task. The
requested speed is randomly generated in the range of 1000
to 4000 (MIPS). If have another parameter closeness factor
this parameter is generated in the range of 0.1 and 1.0 and
is used for deciding the levels from which the resource has
to be allocated .The Desired Execution Time (DET) [15] is
calculated for each gridlet coming to the simulator by using
this equation 3.2.
DET=Wj/Rj (2)
Where,
DET= Desired Execution Time
Wj= workload

Rj=requested Speed
The user is modeled to submit 100 tasks for every 100
seconds. Failures are considered to be transient.

5. PERFORMANCE ANALYSIS

The Tasks are scheduled using FMFRS algorithm for
several iterations and for each iteration, the execution time
was observed to be less using the FMFRS algorithm. One
such iteration is displayed using graph with task in x axis
and CPU speed in Y axis.
The fault tolerant MFRS scheduling is analyzed in real time
approach and found that the execution speed was less with
simulator as compared to the real time approach.
Comparatively the performance of the MFRS algorithm
with fault tolerance is observed to be effective.

 Fig. 1. Performance Analysis

CONCLUSION & FUTURE SCOPE
Resource allocation has become a battle with the
acceleration in number of resources especially in dynamic
environment. The participating resources in a grid may be
computational resources, data storage or computer
network. The fault tolerant most fitting resource scheduling
was implemented in a java based grid environment and
the results are evaluated and concluded that with fault
tolerance feature added to the scheduling algorithm, the
turnaround time of the task is comparatively very less.
The algorithm was tested for transient failures and our
future scope would be to test the algorithm for other
failures like crash and omission failure.

CPU ID CPU Speed CPU Utilizaion

1
2
3
4
5
6
7
8
9

10

550 MHz
1GHz

1.1GHz
1.2 GHz
1.3GHz
1.4 GHz
1.5GHz
2 GHz

2.3 GHz
2.5 GHz

0.3
0.1
0.1
0.2
0.4
0.3
0.8
0.5
0.6
0.5

TABLE 2
PERFORMANCE OF JAVA BASED SIMULATOR

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 821
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ACKNOWLEDGMENT
I would like to thank Dr. Lakhwinder Singh, Coordinator,
PTU Regional Center, Baba Banda Singh Bahadur
Engineering College, Fatehgarh Sahib for kind support and
encouragement he provided to me during this research
work. I also owe my sincerest gratitude towards Prof.
Deepak Aggarwal for his valuable advice and healthy
criticism throughout my work which helped me immensely
to complete my work successfully. It was only because of
his constant guidance and support that, I was able to
complete my paper. I feel indebted to him for the same. I
would like to thank the members of the Departmental
Research Committee for their valuable suggestions. Their
inputs have been instrumental in improving the quality of
my work. I would also like to thank everyone who has
knowingly & unknowingly helped me throughout my
paper work. Last but not least, a word of thanks for the
authors of all those books and papers which I have
consulted during prepration of my paper work. At the end
thanks to the Almighty for strength and patience he gave
me to take my work to a logical end.

REFERENCES
 [1] A. Shamila Ebenezer “Fault Tolerant most Fitting

Resource Scheduling Algorithm (FMFRS) for
Computational Grid” European Journal of Scientific
Research ISSN 1450-216X Volume: 86 No 4
September, 2012, pp.468-473 © EuroJournals
Publishing, Inc. 2012.

[2] Abdul Aziz, Hesham El-Rewini,” Grid Resource
Allocation and Task Scheduling for Resource
Intensive Applications”.

[3] Baratloo, M. Karaul, Z. Kedem, P.
Wyckoff,“Charlotte: Metacomputing on the
Web,”Proceedings of the 9th International Conference
on Parallel and Distributed Computing Systems, 2003.

[4] D. Saha, D. Menasce, S. Porto, et al., “Static and
dynamic processor scheduling disciplines in
heterogeneous parallelarchitectures”, Journal of
Parallel and Distributed Computing 28 (1)(1995) 1–18.

[5] F. Dong and S. G. Akl, “Scheduling algorithm for
grid computing:state of the art and open
problems”, Technical Report of the OpenIssues in Grid
Scheduling Workshop, School of Computing,
UniversityKingston, Ontario, January, 2006

[6] Foster. I and Kesselman, C.: “The Grid2: Blueprint
for a new computing infrastructure”,Elsevier Inc.,
Second Edition, 2004.

[7] Georgiana marin “Grid Computing Technology”
Database Systems Journal vol. II, No. 3/2011.

[8] Herbert Schildt, “Java 2: The Complete
Reference”, Fifth Edition, 2002-08-13

[9] J.Jaybharathy and Ayeshaa Parveen.A,”A Fault
Tolerant Load Balancing Model for Grid
Environment”, Internatinal Journal of Recent trends
in Engineering, Vol 2, No.2,162-164,2009.

[10] Liu Chong, and Lu Huapu, “Study of Traffic
Information Analysis and Decision Support System
Based on Grid Computing”, International Journal of
Information Technology, Vol. 12 No.6 2006.

[11] L. Yang, J. M. Schopf and I. Foster, “Conservative
Scheduling: Using Predicted Variance to Improve
Scheduling Decisions in Dynamic Environments”,
in Proc. of the ACM/IEEE SuperComputing2003
Conference, pp.31-- 46, Phoenix, Arizona, USA,
November 2003.

[12] Malarvizhi Nandagopal, V.Rhymend Uthariaraj,
“Fault Tolerant Scheduling Strategy for
Computational Grid Environment”, International
Journal of Engineering Science and Technology,
Vol.2(9), 4361-4372, 2010.

[13] O. Ardaiz, P. Artigas, T. Eymann, F. Freitag, L.
Navarro, and M. Reinicke, “The catallaxy approach
for decentralized economic-based allocation in grid
resource and service markets,” Applied Intelligence,
vol. 25, no. 2, pp. 131–145, 2006.

[14] Ritu Garg “ Fault Tolerance in Grid
Computing:State of Art and Open” International
Journal of Computer Science & Engineering Survey
(IJCSES) Vol.2, No.1, Feb 2011.

[15] Ruay-Shiung Chang, Chun-Fu Lin, Jen-Jom
Chen,“Selecting the most fitting resource for task
execution” Future Generation Computer Systems,
Volume 27, Issue 2, february 2011 ,pages 227-231.

[16] S.Baghavathi Priya and Dr.T.Ravichandran“ Fault
Tolerance and Recovery for Grid Application
Reliability using Check Pointing
Mechanism” International Journal of Computer
Applications 26(5):32-37, July 2011.

[17] S. Ranaweera and D. P. Agrawal, “A Task
Duplication Based Scheduling Algorithm for
Heterogeneous Systems”, in Proc. of 14th
International Parallel and Distributed Processing
Symposium (IPDPS'00), pp. 445-450, Cancun,
Mexico, May 2000.

[18] S. Wang, I. Hsu, Z. Huang , “Dynamic scheduling
method for computational grid Environments” , in:
Proceedings of the International Conference on Parallel
and Distributed Systems, July 2005, pp. 22–28.

IJSER

http://www.ijser.org/

	4. RESULTS COMPARISON
	4.1 Present Work
	Acknowledgment
	References

